Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2725, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548751

RESUMO

Reactive Oxygen Species (ROS) derived from mitochondrial respiration are frequently cited as a major source of chromosomal DNA mutations that contribute to cancer development and aging. However, experimental evidence showing that ROS released by mitochondria can directly damage nuclear DNA is largely lacking. In this study, we investigated the effects of H2O2 released by mitochondria or produced at the nucleosomes using a titratable chemogenetic approach. This enabled us to precisely investigate to what extent DNA damage occurs downstream of near- and supraphysiological amounts of localized H2O2. Nuclear H2O2 gives rise to DNA damage and mutations and a subsequent p53 dependent cell cycle arrest. Mitochondrial H2O2 release shows none of these effects, even at levels that are orders of magnitude higher than what mitochondria normally produce. We conclude that H2O2 released from mitochondria is unlikely to directly damage nuclear genomic DNA, limiting its contribution to oncogenic transformation and aging.


Assuntos
Peróxido de Hidrogênio , Mitocôndrias , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , DNA/metabolismo , Dano ao DNA , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo
2.
Free Radic Biol Med ; 206: 134-142, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37392950

RESUMO

Reactive Oxygen Species (ROS) in the form of H2O2 can act both as physiological signaling molecules as well as damaging agents, depending on their concentration and localization. The downstream biological effects of H2O2 were often studied making use of exogenously added H2O2, generally as a bolus and at supraphysiological levels. But this does not mimic the continuous, low levels of intracellular H2O2 production by for instance mitochondrial respiration. The enzyme d-Amino Acid Oxidase (DAAO) catalyzes H2O2 formation using d-amino acids, which are absent from culture media, as a substrate. Ectopic expression of DAAO has recently been used in several studies to produce inducible and titratable intracellular H2O2. However, a method to directly quantify the amount of H2O2 produced by DAAO has been lacking, making it difficult to assess whether observed phenotypes are the result of physiological or artificially high levels of H2O2. Here we describe a simple assay to directly quantify DAAO activity by measuring the oxygen consumed during H2O2 production. The oxygen consumption rate (OCR) of DAAO can directly be compared to the basal mitochondrial respiration in the same assay, to estimate whether the ensuing level of H2O2 production is within the range of physiological mitochondrial ROS production. In the tested monoclonal RPE1-hTERT cells, addition of 5 mM d-Ala to the culture media amounts to a DAAO-dependent OCR that surpasses ∼5% of the OCR that stems from basal mitochondrial respiration and hence produces supra-physiological levels of H2O2. We show that the assay can also be used to select clones that express differentially localized DAAO with the same absolute level of H2O2 production to be able to discriminate the effects of H2O2 production at different subcellular locations from differences in total oxidative burden. This method therefore greatly improves the interpretation and applicability of DAAO-based models, thereby moving the redox biology field forward.


Assuntos
Aminoácidos , Peróxido de Hidrogênio , Humanos , Peróxido de Hidrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Aminoácidos/metabolismo , Consumo de Oxigênio , Oxigênio
3.
Free Radic Biol Med ; 172: 298-311, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34144191

RESUMO

Stabilization and activation of the p53 tumor suppressor are triggered in response to various cellular stresses, including DNA damaging agents and elevated Reactive Oxygen Species (ROS) like H2O2. When cells are exposed to exogenously added H2O2, ATR/CHK1 and ATM/CHK2 dependent DNA damage signaling is switched on, suggesting that H2O2 induces both single and double strand breaks. These collective observations have resulted in the widely accepted model that oxidizing conditions lead to DNA damage that subsequently mediates a p53-dependent response like cell cycle arrest and apoptosis. However, H2O2 also induces signaling through stress-activated kinases (SAPK, e.g., JNK and p38 MAPK) that can activate p53. Here we dissect to what extent these pathways contribute to functional activation of p53 in response to oxidizing conditions. Collectively, our data suggest that p53 can be activated both by SAPK signaling and the DDR independently of each other, and which of these pathways is activated depends on the type of oxidant used. This implies that it could in principle be possible to modulate oxidative signaling to stimulate p53 without inducing collateral DNA damage, thereby limiting mutation accumulation in both healthy and tumor tissues.


Assuntos
Proteínas de Ciclo Celular , Proteína Supressora de Tumor p53 , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Humanos , Peróxido de Hidrogênio , Oxidantes/farmacologia , Fosforilação , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA